Skip to content
  • Home
  • Privacy Policy
  • About
  • Cookie Policy
pythoneo

Pythoneo

Online How to Python stuff

Adaptive Thresholding with OpenCV

Posted on September 24, 2023November 4, 2023 By Pythoneo

OpenCV (Open Source Computer Vision Library) provides powerful tools for image processing and analysis. Adaptive thresholding is a technique used to binarize images, separating objects from the background, especially when the lighting conditions are uneven or variable. We’ll explore how to use OpenCV’s adaptive thresholding to enhance image segmentation and improve the accuracy of object detection.

Understanding Adaptive Thresholding

Thresholding is the process of converting a grayscale image into a binary image by classifying each pixel as either foreground (object) or background based on a specified threshold value. In traditional (global) thresholding, a single threshold value is applied to the entire image. However, this method may not work well when the lighting conditions vary across the image.

See also  Aruco Marker Detection with OpenCV

Adaptive thresholding, on the other hand, calculates different threshold values for different regions of the image, allowing it to handle varying lighting conditions effectively. The technique is particularly useful for images with uneven illumination or when the objects of interest have inconsistent contrast.

Using Adaptive Thresholding in OpenCV

Here’s a step-by-step guide on how to perform adaptive thresholding with OpenCV:

1. Import OpenCV:

import cv2

2. Read the Image:

image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

3. Apply Adaptive Thresholding:

adaptive_threshold = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)

In this example, we use the cv2.ADAPTIVE_THRESH_GAUSSIAN_C method for adaptive thresholding, which calculates the threshold value for each pixel based on the weighted sum of the neighboring pixels. You can also choose cv2.ADAPTIVE_THRESH_MEAN_C for a simpler mean-based approach.

See also  AttributeError: partially initialized module 'cv2' has no attribute 'img' (most likely due to a circular import)

The parameters 11 and 2 represent the block size (size of the neighborhood used to calculate the threshold) and a constant subtracted from the calculated threshold value, respectively. You can adjust these values to fine-tune the thresholding process for your specific image.

4. Save or Display the Result:

cv2.imwrite('output.jpg', adaptive_threshold)

This saves the binarized image to a file. Alternatively, you can use cv2.imshow() to display the result if you are working in a graphical environment.

Benefits of Adaptive Thresholding

Adaptive thresholding offers several advantages over global thresholding:

  • Robustness to Lighting Variations: It handles images with uneven or variable lighting conditions more effectively.
  • Improved Object Detection: Objects of interest are separated from the background with greater accuracy.
  • Enhanced Image Segmentation: It simplifies the process of identifying regions or objects within an image.
See also  Image Blending with OpenCV's `addWeighted` Function

Conclusion

Adaptive thresholding is a valuable technique in image processing, allowing you to binarize images under varying lighting conditions. OpenCV provides an easy-to-use function for adaptive thresholding, enabling improved object detection, image segmentation, and more. By applying adaptive thresholding to your image analysis tasks, you can enhance the accuracy and reliability of your computer vision applications.

OpenCV

Post navigation

Previous Post: How to install and use paramiko for SSH connections in Python
Next Post: How to create a simple animation in Tkinter

Categories

  • bokeh (1)
  • Django (6)
  • matplotlib (11)
  • numpy (104)
  • OpenCV (5)
  • Pandas (3)
  • paramiko (11)
  • Pillow (3)
  • Plotly (9)
  • Python (30)
  • Scipy (6)
  • Seaborn (12)
  • statistics (7)
  • Tkinter (10)
  • turtle (2)

RSS RSS

  • Adding Points to an Existing Plot in Matplotlib
  • How to Solve IndexError: Index x is Out of Bounds for Axis x in NumPy
  • Visualizing a Confusion Matrix with Seaborn
  • Linear Regression with NumPy
  • Changing Seaborn Lineplot Color
  • How to extrapolate in Numpy
  • How to calculate accuracy in python
  • Creating Interactive Scatter Plots with Plotly in Python
  • Creating Histograms with Plotly in Python
  • OpenCV FindContours: Detecting and Analyzing Objects in Images

Tags

arithmetic mean array axis button calculations chart column conversion count data type dictionary dimension draw error files fill float generate grid GUI image index integer list matrix max mean min mode multiply normal distribution plot random reshape rotate round rows size string sum test text time type zero

Art and Media Law

Maritime Law

Copyright © 2023 Pythoneo.

Powered by PressBook WordPress theme

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT
Go to mobile version