Skip to content

Pythoneo

Online How to Python stuff

How to resolve ValueError: operands could not be broadcast together with shapes

Posted on April 28, 2023May 17, 2023 By Luke K

If you have ever worked with NumPy arrays, you might have encountered the ValueError: operands could not be broadcast together with shapes. This error occurs when you try to perform an operation on two arrays that have incompatible shapes. We will explain what broadcasting is, how NumPy determines the shapes of the operands, and how to resolve this error.

Broadcasting is a feature of NumPy that allows you to perform arithmetic operations on arrays of different shapes by automatically expanding the smaller array along the missing dimensions. For example, if you have a 2D array of shape (3, 4) and a 1D array of shape (4,), you can add them together by broadcasting the 1D array along the first dimension, resulting in a 2D array of shape (3, 4).

See also  How to find common part of arrays in Numpy?

However, broadcasting is not always possible. NumPy follows some rules to determine whether two arrays can be broadcast together or not. These rules are:

– The number of dimensions of the two arrays must be equal, or one of them must be 1.
– The size of each dimension must be equal, or one of them must be 1.
– If either of these conditions is not met, NumPy will raise a ValueError: operands could not be broadcast together with shapes.

To resolve this error, you need to make sure that your arrays have compatible shapes according to the broadcasting rules. There are several ways to do this, such as:

See also  How to generate meshgrid in 3D with Numpy?

– Reshaping one or both arrays using np.reshape() or np.newaxis.
– Padding one or both arrays with zeros using np.pad() or np.zeros().
– Repeating one or both arrays along the missing dimensions using np.repeat() or np.tile().

Here are some examples of how to apply these methods:

# Example 1: Reshaping
a = np.array([1, 2, 3]) # shape (3,)
b = np.array([[4], [5], [6]]) # shape (3, 1)
# Reshape a to have two dimensions
a = a.reshape((1, 3)) # shape (1, 3)
# Now a and b can be broadcast together
c = a + b # shape (3, 3)

See also  Ultimate tutorial on how to round in Numpy

# Example 2: Padding
a = np.array([1, 2]) # shape (2,)
b = np.array([[3, 4], [5, 6], [7, 8]]) # shape (3, 2)
# Pad a with zeros along the first dimension
a = np.pad(a, ((1, 1), (0, 0))) # shape (3, 2)
# Now a and b can be broadcast together
c = a * b # shape (3, 2)

# Example 3: Repeating
a = np.array([1, 2]) # shape (2,)
b = np.array([[3], [4], [5]]) # shape (3, 1)
# Repeat a along the first dimension
a = np.repeat(a[np.newaxis], 3, axis=0) # shape (3, 2)
# Now a and b can be broadcast together
c = a – b # shape (3, 2)

We hope this blog post has helped you understand what broadcasting is and how to resolve the ValueError: operands could not be broadcast together with shapes.

numpy

Post navigation

Previous Post: How To Remove n From String In Python?
Next Post: How to resolve ValueError: operands could not be broadcast together with shapes (X,) (Y,)

Categories

  • bokeh (1)
  • datetime (3)
  • Django (5)
  • glob (1)
  • io (1)
  • json (1)
  • math (5)
  • matplotlib (10)
  • numpy (100)
  • OpenCV (1)
  • os (3)
  • Pandas (3)
  • paramiko (1)
  • pathlib (2)
  • Pillow (3)
  • Plotly (3)
  • Python (31)
  • random (7)
  • requests (1)
  • Scipy (4)
  • Seaborn (7)
  • shutil (1)
  • sqlite3 (1)
  • statistics (16)
  • sys (1)
  • Tkinter (9)
  • turtle (2)
  • Uncategorized (1)
  • urllib (1)
  • webbrowser (1)

RSS RSS

  • How to use random seed in Numpy
  • TypeError: ufunc ‘add’ did not contain a loop with signature matching types
  • How to resolve AttributeError: ‘numpy.ndarray’ object has no attribute ‘function_name
  • How to resolve TypeError: Cannot perform reduce with flexible type
  • How to resolve ValueError: operands could not be broadcast together with shapes (X,) (Y,)
  • How to resolve ValueError: operands could not be broadcast together with shapes
  • How To Remove n From String In Python?
  • How To Exit A Function In Python
  • How to create violin plot using seaborn?
  • How To Use Colormaps In Matplotlib?

Tags

arithmetic mean array axis button calculations chart conversion copy count counter data type dictionary dimension draw error files fill float generate grid GUI image index integer list matrix max mean median min normal distribution plot random reshape rotate round size standard deviation string sum test text time variance zero

Copyright © 2023 Pythoneo.

Powered by PressBook WordPress theme

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT