Skip to content
  • Home
  • Privacy Policy
  • About
  • Cookie Policy
pythoneo

Pythoneo

Online How to Python stuff

Multiple Regression with NumPy

Posted on August 31, 2023November 4, 2023 By Pythoneo

NumPy provides essential tools for implementing multiple regression models from scratch. We’ll explore the key concepts of multiple regression and demonstrate how to perform multiple regression using NumPy.

Understanding Multiple Regression

Multiple regression aims to find a linear relationship between a dependent variable (Y) and two or more independent variables (X1, X2, …, Xn). The model assumes that this relationship can be expressed as:

See also  How to shuffle an array in Numpy?

Y = β0 + β1X1 + β2X2 + … + βnXn + ε

Where:

  • Y is the dependent variable (the variable we want to predict).
  • X1, X2, …, Xn are the independent variables (features).
  • β0 is the intercept (the value of Y when all X values are zero).
  • β1, β2, …, βn are the coefficients (weights) of the independent variables.
  • ε represents the error term (the difference between the predicted and actual values).
See also  How to calculate square root in Numpy?

Performing Multiple Regression with NumPy

To perform multiple regression using NumPy, follow these steps:

  1. Import NumPy:
  2. import numpy as np
  3. Define your data: Prepare your dataset with the dependent variable (Y) and multiple independent variables (X1, X2, …, Xn).
  4. X1 = np.array([1, 2, 3, 4, 5])
    X2 = np.array([2, 3, 4, 5, 6])
    Y = np.array([3, 5, 7, 8, 10])
    
  5. Calculate the coefficients: Use NumPy functions to calculate the coefficients β0, β1, β2, etc.
  6. X = np.column_stack((np.ones_like(X1), X1, X2))
    coefficients = np.linalg.inv(X.T @ X) @ X.T @ Y
    beta_0 = coefficients[0]
    beta_1 = coefficients[1]
    beta_2 = coefficients[2]
    
  7. Make predictions: Use the calculated coefficients to make predictions.
  8. Y_pred = beta_0 + (beta_1 * X1) + (beta_2 * X2)
    
numpy

Post navigation

Previous Post: Exponential Regression with NumPy
Next Post: Image Blending with OpenCV’s `addWeighted` Function

Categories

  • bokeh (1)
  • Django (6)
  • matplotlib (11)
  • numpy (104)
  • OpenCV (5)
  • Pandas (3)
  • paramiko (11)
  • Pillow (3)
  • Plotly (9)
  • Python (30)
  • Scipy (6)
  • Seaborn (12)
  • statistics (7)
  • Tkinter (10)
  • turtle (2)

RSS RSS

  • Adding Points to an Existing Plot in Matplotlib
  • How to Solve IndexError: Index x is Out of Bounds for Axis x in NumPy
  • Visualizing a Confusion Matrix with Seaborn
  • Linear Regression with NumPy
  • Changing Seaborn Lineplot Color
  • How to extrapolate in Numpy
  • How to calculate accuracy in python
  • Creating Interactive Scatter Plots with Plotly in Python
  • Creating Histograms with Plotly in Python
  • OpenCV FindContours: Detecting and Analyzing Objects in Images

Tags

arithmetic mean array axis button calculations chart column conversion count data type dictionary dimension draw error files fill float generate grid GUI image index integer list matrix max mean min mode multiply normal distribution plot random reshape rotate round rows size string sum test text time type zero

Art and Media Law

Maritime Law

Copyright © 2023 Pythoneo.

Powered by PressBook WordPress theme

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT
Go to mobile version