Skip to content

Pythoneo

Online How to Python stuff

How to trim an array with Numpy clip?

Posted on April 1, 2021March 2, 2023 By Luke K

Let’s learn how to trim an array with Numpy clip function.
numpy trim array

Suppose we have an array:

[0.006, 2, 5, 8, 10, 25, 400]

Clipping an array

We would like to exclude extremum values. Numpy clip function allows us to exclude very low and high values.

Say, I don’t need values below 2 and above 25. Numpy clip function will change them to 2 and 25 instead.

import numpy as np

my_array = np.array([0, 2, 5, 8, 10, 25, 40])
trim_array = np.clip(my_array, 2, 25)

print(f"Trimmed array 2 - 25: \n {trim_array}")

As you may noticed the syntax of clip function is as follows: clip(my_array, min_value, max_value).

See also  How to create an immutable Numpy array?

Using parameters

The thing is you don’t need to define Min and max values. You may put None parameter if you don’t need that value clipped.

import numpy as np

my_array = np.array([0, 2, 5, 8, 10, 25, 40])
trim_array = np.clip(my_array, None, 25)

print(f"My array: \n {my_array}")
print(f"Trimmed array < 25: \n {trim_array}")

The output would be:

My array: 
 [ 0  2  5  8 10 25 40]
Trimmed array < 25: 
 [ 0  2  5  8 10 25 25]

Of course it is also possible to take clip function parameters from the constant values defined before.

import numpy as np

min_value = 1

my_array = np.array([0, 2, 5, 8, 10, 25, 40])
trim_array = np.clip(my_array, min_value, None)

print(f"My array: \n {my_array}")
print(f"Trimmed array > min_value: \n {trim_array}")

Here's an output where values are trimmed between min_value and max value is not defined.

My array: 
 [ 0  2  5  8 10 25 40]
Trimmed array > min_value: 
 [ 1  2  5  8 10 25 40]

As you can notice the values are trimmed. 0 is replaced by 1 and 40 is still present.

See also  How to convert Numpy array to Python list?

These are the ways how you can remove outliers from your dataset.

numpy Tags:array, max, min, trim

Post navigation

Previous Post: How to generate random samples from a normal distribution?
Next Post: How to stack arrays in Numpy?

Categories

  • bokeh (1)
  • datetime (3)
  • Django (5)
  • glob (1)
  • io (1)
  • json (1)
  • math (5)
  • matplotlib (10)
  • numpy (95)
  • OpenCV (1)
  • os (3)
  • Pandas (2)
  • paramiko (1)
  • pathlib (2)
  • Pillow (3)
  • Plotly (3)
  • Python (29)
  • random (7)
  • requests (1)
  • Scipy (4)
  • Seaborn (7)
  • shutil (1)
  • sqlite3 (1)
  • statistics (16)
  • sys (1)
  • Tkinter (9)
  • turtle (2)
  • Uncategorized (1)
  • urllib (1)
  • webbrowser (1)

RSS RSS

  • How to create violin plot using seaborn?
  • How To Use Colormaps In Matplotlib?
  • How to calculate bonds in Python
  • How to handle trigonometry in Python
  • How to Convert Int to Binary in Python?
  • How to fix ValueError: The truth value of an array with zero elements is ambiguous?
  • How to solve NameError: name ‘numpy’ is not defined
  • How to insert seaborn lineplot?
  • How to Find the Length of an Array in Python?
  • How to reset secret key in Django

Tags

arithmetic mean array axis button calculations chart conversion copy count counter data type dictionary dimension draw error files fill float generate grid GUI image index integer list matrix max mean median min normal distribution plot random reshape rotate round size standard deviation string sum test text time variance zero

Copyright © 2023 Pythoneo.

Powered by PressBook WordPress theme

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT