Skip to content
  • Home
  • Privacy Policy
  • About
  • Cookie Policy
pythoneo

Pythoneo

Online How to Python stuff

How to use random seed in Numpy

Posted on May 25, 2023May 25, 2023 By Pythoneo

I will explain how to use random seed in Numpy, a popular Python library for scientific computing. Random seed is a way of controlling the randomness of Numpy’s random number generators, which are used for various purposes such as generating random data, shuffling arrays, sampling from distributions, and more.

Why use random seed?

Randomness is an essential feature of many scientific and statistical applications, as it allows us to model uncertainty, variability, and noise. However, sometimes we want to reproduce the same random results for debugging, testing, or comparison purposes. For example, if we are developing a machine learning algorithm that uses random initialization or stochastic optimization, we might want to compare its performance on different runs with the same data and parameters.

See also  How to use numpy mgrid

This is where random seed comes in handy. By setting a random seed before calling any Numpy function that uses randomness, we can ensure that the random number generators will produce the same sequence of random numbers every time. This way, we can eliminate the variability due to randomness and focus on the effects of other factors.

How to use random seed?

Using random seed in Numpy is very simple. All we need to do is to call the np.random.seed function with an integer argument that represents the seed value. For example:

import numpy as np
np.random.seed(42) # set the seed to 42
a = np.random.rand(3) # generate a random array of size 3
print(a) # print the array

The output will be:

[0.37454012 0.95071431 0.73199394]

If we run this code again with the same seed value, we will get the same output. However, if we change the seed value or do not set it at all, we will get different outputs.

See also  How to count number of zeros in Numpy array?

Note that setting a random seed affects only the current instance of Numpy’s random number generator. If we create another instance using np.random.RandomState or np.random.default_rng, it will have its own independent state and seed. Therefore, we need to set the seed for each instance separately if we want to control their randomness.

Also note that setting a random seed does not guarantee that the results will be identical across different versions of Numpy or different platforms. This is because Numpy’s random number generators may use different algorithms or implementations that produce slightly different results. Therefore, if we want to ensure reproducibility across different environments, we should also specify the exact version of Numpy and the random number generator that we use.

See also  How to calculate absolute value using Numpy

I explained how to use random seed in Numpy, why it is useful for reproducibility purposes, and what are some caveats to keep in mind. I hope you found this post informative and helpful. If you have any questions or feedback, please leave a comment below.

numpy

Post navigation

Previous Post: TypeError: ufunc ‘add’ did not contain a loop with signature matching types
Next Post: What does split () do in Python

Categories

  • bokeh (1)
  • Django (6)
  • matplotlib (11)
  • numpy (104)
  • OpenCV (5)
  • Pandas (3)
  • paramiko (11)
  • Pillow (3)
  • Plotly (9)
  • Python (30)
  • Scipy (6)
  • Seaborn (12)
  • statistics (7)
  • Tkinter (10)
  • turtle (2)

RSS RSS

  • Adding Points to an Existing Plot in Matplotlib
  • How to Solve IndexError: Index x is Out of Bounds for Axis x in NumPy
  • Visualizing a Confusion Matrix with Seaborn
  • Linear Regression with NumPy
  • Changing Seaborn Lineplot Color
  • How to extrapolate in Numpy
  • How to calculate accuracy in python
  • Creating Interactive Scatter Plots with Plotly in Python
  • Creating Histograms with Plotly in Python
  • OpenCV FindContours: Detecting and Analyzing Objects in Images

Tags

arithmetic mean array axis button calculations chart column conversion count data type dictionary dimension draw error files fill float generate grid GUI image index integer list matrix max mean min mode multiply normal distribution plot random reshape rotate round rows size string sum test text time type zero

Art and Media Law

Maritime Law

Copyright © 2023 Pythoneo.

Powered by PressBook WordPress theme

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT
Go to mobile version