Skip to content

Pythoneo

Online How to Python stuff

How to create Scatter Plot in Seaborn

Posted on February 16, 2022March 2, 2023 By Luke K

Seaborn is a powerful data visualization library in Python that provides beautiful and easy-to-use interfaces for creating a variety of plots. One of the most common types of plots used in data visualization is a scatter plot. A scatter plot is a type of plot that displays the relationship between two variables. In this tutorial, we will learn how to create a scatter plot in Seaborn with the seaborn.scatterplot function.

Before diving into the code, let’s first go over some of the important concepts that you should know.

Dataset: In order to create a scatter plot, you need a dataset. A dataset is a collection of data points that you want to visualize. In Seaborn, you can load an example dataset or use your own custom dataset. In this tutorial, we will use the example “tips” dataset that is provided by Seaborn.

See also  How to insert seaborn lineplot?

X-axis and Y-axis: A scatter plot consists of two variables, the X-axis variable and the Y-axis variable. The X-axis variable represents the independent variable and the Y-axis variable represents the dependent variable. In a scatter plot, each data point is represented as a dot on the plot, with the X-axis value determining the horizontal position of the dot and the Y-axis value determining the vertical position of the dot.

Seaborn functions: Seaborn provides several functions that can be used to create different types of plots. The seaborn.scatterplot function is used to create a scatter plot. This function takes several arguments, including the X-axis and Y-axis variables, the dataset, and other optional arguments that can be used to customize the plot.

See also  How to create violin plot using seaborn?

Now that we have a basic understanding of the concepts, let’s move on to creating a scatter plot in Seaborn.

Step 1: Importing the required libraries

In order to create a scatter plot in Seaborn, you need to import two libraries: Seaborn and Matplotlib. Seaborn is the library that provides the seaborn.scatterplot function, while Matplotlib is the library that provides the plotting functionality.

import seaborn as sns
import matplotlib.pyplot as plt

Step 2: Loading the dataset

In this step, we will load the “tips” dataset that is provided by Seaborn. This dataset contains information about the total bill and tip size for different meals at a restaurant.

tips = sns.load_dataset("tips")

Step 3: Creating the scatter plot

See also  How to create Seaborn Heatmap?

Now that we have the dataset, we can create the scatter plot using the seaborn.scatterplot function. The first two arguments that we need to pass to this function are the X-axis and Y-axis variables, which represent the independent and dependent variables, respectively. In this case, we want to visualize the relationship between the total bill and tip size, so we will use the “total_bill” and “tip” columns as the X-axis and Y-axis variables, respectively.

sns.scatterplot(x="total_bill", y="tip", data=tips)

Step 4: Displaying the plot

Finally, we will use the plt.show() function to display the plot.

plt.show()

Seaborn Scatterplot

Here’s the complete code for creating a scatter plot in Seaborn.

Seaborn

Post navigation

Previous Post: How to use interpolate in Numpy
Next Post: How to Make a Countplot in Seaborn

Categories

  • bokeh (1)
  • datetime (3)
  • Django (5)
  • glob (1)
  • io (1)
  • json (1)
  • math (5)
  • matplotlib (10)
  • numpy (95)
  • OpenCV (1)
  • os (3)
  • Pandas (2)
  • paramiko (1)
  • pathlib (2)
  • Pillow (3)
  • Plotly (3)
  • Python (29)
  • random (7)
  • requests (1)
  • Scipy (4)
  • Seaborn (7)
  • shutil (1)
  • sqlite3 (1)
  • statistics (16)
  • sys (1)
  • Tkinter (9)
  • turtle (2)
  • Uncategorized (1)
  • urllib (1)
  • webbrowser (1)

RSS RSS

  • How to create violin plot using seaborn?
  • How To Use Colormaps In Matplotlib?
  • How to calculate bonds in Python
  • How to handle trigonometry in Python
  • How to Convert Int to Binary in Python?
  • How to fix ValueError: The truth value of an array with zero elements is ambiguous?
  • How to solve NameError: name ‘numpy’ is not defined
  • How to insert seaborn lineplot?
  • How to Find the Length of an Array in Python?
  • How to reset secret key in Django

Tags

arithmetic mean array axis button calculations chart conversion copy count counter data type dictionary dimension draw error files fill float generate grid GUI image index integer list matrix max mean median min normal distribution plot random reshape rotate round size standard deviation string sum test text time variance zero

Copyright © 2023 Pythoneo.

Powered by PressBook WordPress theme

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT