Skip to content

Pythoneo

Online How to Python stuff

How to use interpolate in Numpy

Posted on February 16, 2022March 2, 2023 By Luke K

NumPy provides the interp function, which is used for one-dimensional linear interpolation. The function takes four required arguments:

x: A 1-D array representing the x-coordinates of the data points.
xp: A 1-D array representing the x-coordinates of the data points at which the interpolated values are desired.
fp: A 1-D array representing the y-coordinates of the data points. The fp array should have the same length as xp.
left and right (optional): The values to be used for out-of-bounds extrapolation. If not given, left and right are set to fp[0] and fp[-1], respectively.

See also  How to convert array to binary?

Here is an example of how you can use the interp function in NumPy:

import numpy as np

x = np.array([0, 1, 2, 3, 4])
xp = np.array([1.5, 2.5, 3.5])
fp = np.array([2, 3, 4])

interpolated_values = np.interp(xp, x, fp)

print(interpolated_values)

This will output:

[2.5 3.5 4. ]

This example demonstrates how the values at x-coordinates 1.5, 2.5, and 3.5 can be interpolated from the given data points (x, fp).

See also  How to save array as csv file with Numpy?
numpy

Post navigation

Previous Post: How to use gradient in Numpy
Next Post: How to create Scatter Plot in Seaborn

Categories

  • bokeh (1)
  • datetime (3)
  • Django (5)
  • glob (1)
  • io (1)
  • json (1)
  • math (5)
  • matplotlib (10)
  • numpy (95)
  • OpenCV (1)
  • os (3)
  • Pandas (2)
  • paramiko (1)
  • pathlib (2)
  • Pillow (3)
  • Plotly (3)
  • Python (29)
  • random (7)
  • requests (1)
  • Scipy (4)
  • Seaborn (7)
  • shutil (1)
  • sqlite3 (1)
  • statistics (16)
  • sys (1)
  • Tkinter (9)
  • turtle (2)
  • Uncategorized (1)
  • urllib (1)
  • webbrowser (1)

RSS RSS

  • How to create violin plot using seaborn?
  • How To Use Colormaps In Matplotlib?
  • How to calculate bonds in Python
  • How to handle trigonometry in Python
  • How to Convert Int to Binary in Python?
  • How to fix ValueError: The truth value of an array with zero elements is ambiguous?
  • How to solve NameError: name ‘numpy’ is not defined
  • How to insert seaborn lineplot?
  • How to Find the Length of an Array in Python?
  • How to reset secret key in Django

Tags

arithmetic mean array axis button calculations chart conversion copy count counter data type dictionary dimension draw error files fill float generate grid GUI image index integer list matrix max mean median min normal distribution plot random reshape rotate round size standard deviation string sum test text time variance zero

Copyright © 2023 Pythoneo.

Powered by PressBook WordPress theme

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT