How to Use Seaborn in Python: A Fast, Practical Guide

Seaborn is a high‑level statistical visualization library built on matplotlib, designed to turn tidy data into clear, publication‑quality charts with minimal code; install Seaborn, pick a plot function like scatterplot/histplot/catplot, pass a pandas DataFrame and column names, then theme with set_theme() and color palettes for consistent, attractive output.

Quick answer: Install Seaborn (pip install seaborn), import a dataset into a pandas DataFrame, call a Seaborn function (e.g., sns.scatterplot(data=df, x="col1", y="col2", hue="group")), and polish the figure with sns.set_theme(style="whitegrid") and a palette; for small multiples and conditioning by categories, use sns.catplot(..., col="category") or FacetGrid.

What this guide covers

  • Installing Seaborn and setting a global theme to get great defaults out of the box.
  • Core plot families: relational, distribution, categorical, regression, and multi‑plot grids, with copy‑paste snippets.
  • Color palettes, figure styling, and multi‑panel layouts that communicate statistical structure clearly.

Prerequisites

  • Python 3.8+ with pandas, matplotlib; install via pip or conda.
  • A tidy (long‑form) DataFrame with well‑named columns for dataset‑oriented plotting.
See also  Create a Bubble Plot with Seaborn

Step‑by‑step: From install to polished charts

1) Install and set the theme

# Install (choose one)
pip install seaborn
# or
conda install seaborn

# Basic usage
import seaborn as sns
import pandas as pd

sns.set_theme(style="whitegrid", context="notebook", palette="deep")  # great defaults

Seaborn provides opinionated defaults through set_theme and integrates with matplotlib rcParams for cohesive styling.

2) Load a dataset

# Any pandas DataFrame works; Seaborn also ships sample datasets
df = sns.load_dataset("tips")  # total_bill, tip, sex, smoker, day, time, size
df.head()

The dataset‑oriented API lets you specify columns by name, avoiding manual array wrangling and enabling concise, declarative plots.

3) Relational plots: trends and groups

ax = sns.scatterplot(data=df, x="total_bill", y="tip", hue="time", style="smoker", size="size")
ax.set(title="Tips vs. Bill", xlabel="Total bill ($)", ylabel="Tip ($)")

Relational functions like scatterplot/lineplot map variables to visual encodings (color, size, style) for multivariate patterns with minimal code.

4) Distributions: univariate and bivariate

# Univariate
sns.histplot(data=df, x="total_bill", bins=30, kde=True)

# Bivariate density
sns.jointplot(data=df, x="total_bill", y="tip", kind="kde", fill=True)

Use histplot/kdeplot/jointplot to summarize distributions and relationships; KDEs provide smooth estimates when appropriate.

See also  How to create Seaborn Heatmap

5) Categorical comparisons with uncertainty

# Compare distributions and confidence intervals
sns.catplot(data=df, x="day", y="tip", hue="smoker", kind="bar", ci=95, height=4, aspect=1.4)
# Alternatives: boxen/violin/strip/swarm for different tradeoffs

catplot unifies categorical charts and returns a FacetGrid for small multiples by row/col—handy for split‑by analyses.

6) Regression and statistical relationships

# Visualize linear fit with confidence interval
sns.lmplot(data=df, x="total_bill", y="tip", hue="smoker", height=4, aspect=1.3, ci=95)

Seaborn’s regression plots add trend lines and intervals, emphasizing statistical structure without manual model code for common cases.

7) Multi‑plot grids and conditioning

g = sns.FacetGrid(df, col="day", row="time", hue="smoker", margin_titles=True)
g.map_dataframe(sns.scatterplot, x="total_bill", y="tip")
g.add_legend()

Facet grids elicit comparisons across conditional subsets, a core design principle behind Seaborn’s dataset‑oriented API.

Color, palettes, and figure styling

# Choose perceptually balanced palettes
sns.set_theme(style="whitegrid")
sns.color_palette("viridis", as_cmap=False)      # sequential
sns.color_palette("coolwarm", as_cmap=False)     # diverging
sns.color_palette("tab10", as_cmap=False)        # qualitative

Use qualitative palettes for categories, sequential for ordered magnitudes, and diverging for deviations around a midpoint; keep accessibility in mind.

Seaborn vs. matplotlib: when to use which?

  • Use Seaborn when plotting tidy DataFrames and statistical patterns with defaults that “just work”.
  • Drop to matplotlib for fine‑grained control of spines, ticks, and advanced annotations; Seaborn returns axes/grids you can customize.
See also  How to Create a Boxplot in Seaborn

Common pitfalls and quick fixes

  • Mismatched column names or wide‑form data: reshape to long form with pd.melt for dataset‑oriented functions.
  • Overplotting in dense scatterplots: switch to hexbin via jointplot(kind="hex") or add transparency with alpha.
  • Theme clashes: call sns.set_theme() once at the top to standardize look and feel across figures.

FAQ

Question Answer
How do I change figure size globally? Use sns.set_theme() then adjust matplotlib rcParams (e.g., plt.rcParams["figure.figsize"]=(8,4)) or pass height/aspect to Seaborn’s figure‑level functions like catplot.
Can Seaborn handle missing values? Seaborn generally ignores NaNs by default; consider dropna() or imputation before plotting for clarity and consistent axes.
How do I export publication‑quality images? Use plt.savefig("fig.png", dpi=300, bbox_inches="tight") or vector formats like SVG/PDF for print; Seaborn builds on matplotlib’s exporters.